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Abstract

Under mild assumptious, the classical Farkas lemma approach to
Lagrange multiplier theory is extended to an infinite programming for-
mulation. The main result generalizes the usual first-order necessity
conditions to address problems in which the domain of the objective
function is Hilbert space and the nummber of constraints is arbitrary.
The result is used to obtain necessity conditions for a well-known prob-
lem from the statistical literature ou probability density estimation.

Key words: Lagrange multiplier theory, Farkas lemma, infinite program-
ming, mathematical programming.






1 Introduction

In 1951, Kuhn and Tucker [14] developed a Lagrange multiplier theory for
mathematical programming problems that contain inequality constraints. In
this theory, the domain of the objective function is Euclidean space and the
constraint functionals are indexed by a finite set. Their development, expli-
cated and popularized by Fiacco and McCormick ([6], Chapter 2), invokes
the classical Farkas lemima (Farkas [0]) to generate a vector (the Lagrange
multipliers) that can be viewed as a “weighting” of the finite set of con-
straints. For years we have tanght this material, each time pondering the
extent to which this development of Lagrange multiplier theory depends on
the finite dimensionality of Fuclidean space and the finiteness of the con-
straint set. Somewhat recently, our interest was enhanced when we learned
of an interesting infinite programming problem in the statistics literature for
which we could state a formal generalization of the usual first-order neces-
sity conditions, with no known theoretical justification for doing so. In the
present study of Lagrange multiplier theory, we have not only succeeded in
generalizing the Farkas lemma approach, hut have also acquired new insight
into the essential features of that approach.

Of late, it has become fashionable to refer to the first-order necessity
conditions as the “Karush-Kulin-Tucker conditions,” rather than the “Kuhn-
Tucker conditions.” This observation motivated us to carefully study the ori-
gins of these conditions, resulting in a fascinating excursion into the history
of nonlinear programming and the classical calculus of variations. Because of
the pedagogical nature of the present work, we helieve that it is appropriate
to share what we have learned. In passing, we note that Prékopa [17] effec-
tively argues that fundamental ideas concerning the optimality conditions for
nonlinear programming can he found in some early papers in mechanics by
Fourier, Cournot, and Farkas and also by Gauss, Ostrogradsky and Hamel.

In the 1930s, there flourished at the University of Chicago a school of
thought in the calculus of variations that was founded by G. A. Bliss. Re-
searchers associated with this school included L. M. Graves, H. H. Goldstine,
M. R. Hestenes, A. S. Houseliolder, W. Karush, E. J. McShane, W. T. Reid,
F. A. Valentine, and many others. Lagrange multiplier theory for the equality
constrained mathematical programming problem was known, in one form or
another, to most researchers in the classical calculus of variations, who were
fully aware that it could be derived from various theories for more general



problems. Bliss [3] presented an elegant exposition of this theory in the first
section of a 1938 survey of normality and abnormality in the calculus of varia-
tions. The first section of Bliss’s article is entitled, “Abnormality for minima
of functions of a finite number of variables,” and it begins, “The significance
of the notion of abnormality in the calculus of variations can be indicated
by a study of the theory of the simpler problem of finding ....” (p. 367).
What is particularly enlightening about this section is that it reveals how the
Chicago school regarded finite-dimensional problems: in a pre-computational
era, the theoretically less challenging case of finite dimensions was primar-
ily valued as a training ground for developing intuition about more difficult
problems.

Another interest of the Clicago school was the incorporation of inequality
constraints. They often used squared slack variables to extend known theory
and insight from the more standard equality constrained problem to the less
standard nequality constrained problem. Hestenes recalled that this device,
as well as the techniques of successive linear and quadratic programming
(techniques usually attributed to the post-war mathematical programming
community), was a standard tool of the Chicago school.

In his 1937 Ph.D. thesis, Valentine [23] studied the problem of Lagrange
with differential inequality constraints of the form

gl y,dy/da) > 0.
He replaced this constraint with the equality constraint

gy, dy/de) = ((]L’/(l.‘lf)z,

where z(x) is an auxiliary function satisfying a particular initial condition,
and applied the standard theory. Today, many anthors refer to the use of
squared slack variables as the “Method of Valentine.” The first author of the
present paper, undoubtedly influenced by the instruction of Hestenes and
Valentine in his graduate eduncation at UCLA, often employs this method
to develop insight in elementary courses. For example, a quick way to de-
rive Lagrange multiplier theory for general nonlinear programming is to add
squared slack variables to the inequality constraints, then apply the stan-
dard theory for equality constrained nounlinear programming. This approach
does not establish the nonnegativity of the multipliers of the inequality con-
straints; however, their nonnegativity follows directly from the second-order



necessity conditions. Collectively, then, one obtains the same first-order and
second-order necessity conditions from this elementary approach. The price
that one pays is that regularity (linear independence of the gradients of the
binding constraints) must he assumed, so that it is not possible to reap the
benefits of more subtle constraint qualifications.

Given these interests of the Chicago school, it made perfect sense for
Graves to assign to Karush, as a topic suitable for his master’s thesis, the
simple problem of extending Bliss’s finite-dimensional treatment of equal-
ity constraints to the case of inequality constraints. Karush [12] handled
his assignment beautifully, deriving first-order necessity conditions using the
Farkas lemma and formally stating the Kuhn-Tucker constraint qualifica-
tion as “Property Q.” Thus, Karnslh’s 1939 thesis contains the Kuhn-Tucker
theory in all of its particulars. The constraint qualification @ was implicit
in Bliss [3], who showed that it was implied by regularity, which he then
assumed. Karush, however, assuimed ouly the constraint qualification, ac-
cording 1t a privileged status that Bliss had not.

One characteristic of the usnal (Kuhn-Tucker) approach to Lagrange mul-
tiplier theory is that it requires the multiplier of the gradient of the objective
function (say Ag) to be unity. This requirement is what necessitates a con-
straint qualification: it is generally known that this hypothesis is unnecessary
if Ay 1s allowed to vary freely. Tor nonlinear programming with inequality
constraints, this fact is nsually attributed to John [11] and called the Fritz
John condition. (The device itself was first studied by Mayer [15]; in fact,
this is the standard formulation of Lagrange multiplier theory in the calculus
of variations.) It is of value, here, to point ont that Karush also presented a
form of the John theory. A straightforward application of Bliss’s treatment
of the equality constrained problem to the squared slack variable formulation
of the inequality constrained problem led him to a result that is identical to
John’s, but without the sign restrictions on the multipliers. Karush then ob-
served that the sign restrictions followed from Bliss’s second-order necessity
theory. As we have already observed, however, the price of this derivation
is the assumption of regularity and two continuous derivatives. Accordingly,
Karush employed this approach in a manner that we have attributed to the
Chicago school, viz. to obtain insights that led him to the Karush-Kuhn-
Tucker theory.

Karush was never enconraged to publish his work, presumably because
the finite-dimensional case was then deemed too elementary to be of inde-



pendent interest. It remained virtually unknown until Kuhn discovered a
reference to it in a 1974 texthook by Takayama [19] and obtained a copy
of the thesis. Kuhn attempted to “set the record straight” at a 1975 AMS
symposium (Kuhn [13]), and even went so far as to refer to the “Karush
conditions.” The same year, Hestenes [10], who had directed Karush’s Ph.D.
thesis, noted Karush’s work in Lis book on optimization theory. Even so, it
is only very recently that Karush’s work has been generally acknowledged.

In summary, our historical investigations have led us to strongly sup-
port the “Karush-Kuhn-Tucker” terminology. There is no question of the
importance of the Kuhn-Tucker paper in the history of mathematical pro-
gramming, but there is also no question that Karush obtained the identical
result twelve years earlier. Furthermore, not only is Karush himself deserving
of recognition, but we bhelieve that the use of his name is a fitting tribute to
the members of the great Chicago school of Bliss, whose deep understanding
of mathematical programming has not been properly recognized and appre-
ciated. Because it was not until the 1950s that there was a demand for the
finite-dimensional theory, the Clicago researchers were simply two decades
ahead of their time. The Karnsh-Kuhn-Tucker conditions represent a rare
instance in which it is possible to document just how much of mathematical
programming these researchers understood and anticipated.

Returning to the present paper, our objective is to extend the classical
Farkas lemma approach to mathematical programming problems in which
the domain of the objective function is Hilbert space and the constraint
functionals are indexed by an arbitrary set. Our approach carefully mimics
the finite programiming development. It is based on a generalized Farkas
lemma, and replaces the Lagrange mmnltiplier vector with a measure on the
(possibly infinite) index set. If this measure is absolutely continuous, then
it can be represented as a (density) function on the index set. Because our
point of view may seem unnatural to some readers otherwise familiar with
Lagrange multiplier theory, we hriefly digress to motivate it.

Consider vectors wy, ..., 2, € R™, scalar weights uq,...,up € R", and the
weighted sum

Z iy,

el

where the index set [ = {l,... k}. By defining a measure p on the Borel
sets of R" that concentrates on {r,..., u1} and satisfies p({x;}) = w;, we
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can write ,

Z i = ap(da) .

i€l TRt
Thus, a set of weights can be viewed as a measure and a weighted sum can
be viewed as a (Lebesgue) integral with respect to that measure. When the
weights are nonnegative and sum to unity, g is a probability measure and
probabilists call the integral an expectation.

Now consider the index map 7 — a;;, which embeds I in R". The measure

p induces a measure u on the subsets of I by w({i}) = p({x;}). This allows
us to further write

Z’(/,,‘.‘l.',,' =/ wp(de) = / wu(di) ;
JI

tn

i€l “h
hence, our point of view that a set of weights is a measure on an index set.
It is this perspective that will lead to a mmanageable statement of generalized
first-order conditions.

The flavor of our generalization of Lagrange multiplier theory is not en-
tirely new. Semi-infinite programming is also concerned with problems in
which the constraint functionals are indexed by an infinite set, although the
domain of the objective function is still assumed to be Euclidean space. The
famous paper by John [11] posed a semi-infinite programming problem; how-
ever, John exploited the finite dimensionality of R* to reduce the number
of constraints to n + 1. More vecently, a multiplier theorem of precisely the
sort that we seek was obtained by Goherna, Lopez, and Pastor [8]. The au-
thors use a generalized Farkas lemma and retain the full set of constraints;
however, their result also depends critically on the finite dimensionality of
Euclidean space.

It should be noted that a mumber of anthors have published multiplier
theorems in very abstract settings. The standard formulation is that of
Guignard [9], who derived both necessity and sufficiency conditions for the
problem

maxiunize ()
subject to +re(CcCX
a(x) e BCY,

where X and Y are real Banach spaces and ¢ : X — (—o00,+00) and « :
X — Y are Fréchet differentiable. Guignard’s multiplier is an element of the
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topological dual space of V', and her entire approach is markedly different
from ours.

The primary purpose of the present paper is pedagogical. That 1s, we wish
to demonstrate that by (i) interpreting the vector of Lagrange multipliers as
a measure on the index set of constraints and by (ii) utilizing tools from
functional analysis and probability theory, the standard finite-dimensional
approach to multiplier theory (Karnsh-Kuhn-Tucker) can be successfully gen-
eralized to infinite programming in Hilbert space. This exercise, however, is
not entirely pedagogical, for we also believe that there are important infi-
nite programming problems to which onr theory can be profitably applied.
Therefore, after in Section 2 deriving first-order necessity conditions for gen-
eral infinite programming problems, in Section 3 we will consider results that
facilitate the use of these conditions. In Section 4, by way of an example, we
will also apply this theory to obtain necessity conditions for a constrained
optimization problem from the statistical literature on probability density
estimation. However, we have deferred to another paper (Trosset [21]) an
investigation of the statistical consequences of these conditions.

2 Main Theorem

We begin with a real Hilbert space X with inner product (- ,-). By the

& 1 1 ) y
general nonlinear programming problem — problem (NLP) for short — we
mean the constrained optimization problem

maximize  f{x)
subject to g, {2) >0 Vo el
hp(a)y =0 Ve g,

where fgo,hp: X — (—o0,+00). We assmune that the index sets I and .J
have corresponding sigma fields I and J such that the pairs (I,I) and (J,J)
are measure spaces. Measures on these spaces will be denoted by £, u, A, etc.
At times, we will also endow [ and .J with topologies. Typically, I and .J will
be subsets of Euclidean space. For each 22 € X, we define the index subset
Ip(z) :=={a € I:g,(x)=0}

We assume that f,¢.,hy € CH(X). For each 2 € X, the sets VAy(z) :=
{Vgo(x) : a« € Iy(x)} and VB(a) := {Vhg(a) : 4 € J} are assumed to be
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Borel measurable. We also assume that the index maps a — Vyg,(z) and
B3+ Vhg(a) are Borel bimeasnrable functions. This will enable measures on
I and J to induce measures on X, and also conversely. Measures on X will
be denoted VI, VG, etc.

For technical reasons, we will sometimes further assume that the functions
Jo and hg are elements of a real Hilbert space I'. In that event, we will assume
that the sets Ao(z) := {go : o € Iy(2)} and B := {hg : B € .J} are Borel
measurable. We will also assume that the index maps a — ¢, and §+— hy
are Borel measurable functions. This will enable measures on I and J to
induce measures on I'. Such measures will be denoted by F, G, etc.

In this section we will derive necessary conditions for a point «* € X to
be a local solution of problemn (NLP). To do so, we modify and generalize
Fiacco’s and McCormick’s [6] presentation of the first-order theory for the
finite-dimensional case. The key to this generalization is the concept of the
expectation of a measure on a Hilbert space. Toward this end, in what
follows H will denote a real Hilbert space with inner product (-, -). Following
Parthasarathy ([16], Definition 3.2, p. 168) we make the following definition.

Definition 2.1 Let pp be a mcasure on H. If the linear functional L(y) :=
[y, @)p(dx) is continuous, then the cepectation of p, which we denote by
[ap(de), is defined to be the Riesz vepresenter of L.

At this point it will be of value to introduce some basic notation. Let
M(K) denote the family of totally finite positive measures that concentrate
on the set K C H, and let M(/\') denote the family of probability mea-
sures that concentrate on the set N C H. We are interested in the sets of
expectations

C(N)= {/ ap(da) s p € M(K)}
and

o) ={ fontde) s we My |

The set C7(K) is esseutially the convex hmll of K| and the set C'(K) is
essentially the cone generated by (') (). It should be clear that C'(K) and
C1(K) are convex. In the next section we will demonstrate that Cp(K) is also
compact. The closedness of ('(L') will be of fundamental importance in our
theory. In the next section we will construct a condition which guarantees

9



that C(K) is closed. However, for the moment we will assume that it is
closed.
We now generalize a famous result.

Lemma 2.1 (Generalized Farlas Lemma): Let H denote a real Hilbert space
with inner product (- ,-). Let wy € H and K C H. Assume that C(K) is
closed. Then the following are cquivalent:

(1) VyeH, (y,v)>0 VaeeK entaids (y,29) >0;
(1)  Fp € M(K) such that wxy = /:r://,((l.'r:) :

Proof: We utilize the notion of a dnal cone, introduced by Dieudonné [4]
in his proof of the Hahn-Banach theorem. The dual cone C* of a cone € is
the set of all continuous linear functionals nonnegative on (.

Consider (i). If (y,x) > 0 Vo € K, then (y, [ap(dr)) = [(y, x)pu(dz) >
0V e M(K), ie. y € C(K)". Hence, (i) is equivalent to the assertion that
y € C(K)* entails (y,xy) > 0 Vy € H, or simply that «, € C(K)*. By
Lemma 5.6 in Girsanov [7], ("(A)™ is the weak closure of the convex hull of
C(K). Since C(K) is closed and convex, it follows that (i) is equivalent to
g € C(K)* = C(K). But (ii) is a direct statement that x, € C(K); hence,
(1) and (ii) are equivalent. 0
Remark: It is possible to give an elementary, but more complicated proof of
this result. The very elegant proof that we have presented was suggested to
us anonymously by the referee. This is an amusing realization of Valentine’s
[22] admonition to “always look at the dual situation when working with
convex sets for it may save you some embarrassiment.”

Associated with problem (NLP) is the generalized Lagrangian gradient
O(eyu,A) =V, f(a) — / Vogola)u(da) + / V. hg(2)A(dp),
Ji Ja

which is guaranteed to exist if the sets VA(x) and VB(x) are compact and
the measures u and A are totally finite. Our goal is to derive necessary
conditions for solving problem (NLP) that involve this expression. We are
now 1in a position to characterize some of these conditions.

Suppose that x is a feasible poiut of problem (NLP). Let

Zi(r) = {z€ X :(z,Vy. (1)) =0 Vo€ ),
(. NVhg(e) =0V peld (z Vf(x))>0},

1O



Zy(z) = {z€ X :(z,Vy, (1)) >0 Ve ),
(r,Vihg(e)) =0 Ve (2 Vf(x)) <0},
Proposition 2.1 Let K = VAy(a*) U VB(a*). Assume

Al K is compact;
A2 C(K) is closed.

If ™ is a feasible point of problem (NLP), then the following are equivalent:

(i) Zy(x*) = ¢.
(1) There exist totally finite mcasures w* on (1,1) and X* on (J,J) such
that

(¢) O'(a* u*, X*) =0,

(b) go(x*) >0V a€l,

(¢) hg(z*) =0V ge.J,

(d) w(I')=0 Y I' mcaswrable C [ ~ Iy(a™),

(¢) w*(I'Y >0 Y I'" measurable C 1.

We will refer to the conditions (a)-(e) in (ii) as the generalized first-order
conditions.
Proof: Assume (ii) and suppose that = € Z,(«™). Then

0 > () |
= (z, /I Vo (™)™ (dev) — ./J Vig(a™)) A" (df3))
= /I(z, Vg (™ Nu(da) — /;(:,V/r,ﬁ(:r:*)))\*((lﬂ)

> 0, -

which is a contradiction. This proves that (i) implies (i).
Conversely, suppose that Z,(a") = ¢. Then, if = satisfies
(,Vga(27)) >0 Ve Iy(a")
(z,Vhg(2™)) >0 Vel
(z,=Vlhs(a™)) >0 Viaelg,

11



z must also satisfy (z, Vf(+*)) > (. But this implication is (i) in Lemma
2.1, so we may conclude that

Vi) = / yNV Fo(dy) + . ;I/VF'((I;:/)—/ yV F"(dy)
VA (=*) JVB(x*) VB(r*)

= ~/Io(:,,-*) Vg (™) o(da) + '/J V(™)' (dB) — /J Vg )" (dB) .

We now obtain conditions (a)-(¢) by setting «* = ty on Iy(2*),u* = 0 on
I~ Iy(x™), and \* = —(t' — ") ou .J. a

Our statement of first-order condition (a) is somewhat nontraditional.
Suppose that the ¢, and /iy ave elements of a real Hilbert space I'. Assuming
that the indicated expectations exist (which, of course, they may not), define
the generalized Lagrangian function to be

Ua,u, Ny = f(a) — /‘(/(.,,(;lf)u,((l(v) 4 / hg(2)A(dp) .
Jr Ja
To conform to commoun practice, we would write condition (a) as
Vo l(a™, ™ Ay = (@ u™, A7) =0 .

The following result establishes circumstances in which this representation is
legitimate.

Proposition 2.2 Fiz v € X. Let u and X denote totally finite measures
on (I,Y) and (J,J). Assume that the cxpectations §:= [; gou(da) and b :=
[7haA(dB) both exist. If the sets of functions A := {g, : o« € I} and B are
each uniformly Lipschitz continuous, then NV, 0(x, u, X)) = 0 (a,u, N).

Proof: We must establish that
V/I.‘(/(.,(:I:)'u,((l(r) = Vg(r) = / yVF(dy) = /IVg(,(:I:)’u,(d(y) , (D)
SV A(x) .

where VF' is the measure on X induced by u. Clearly it suffices to prove
that

(. Va() = (. [ 9VE) Ve X (2)



We note that

(n, Vg(x)) = g'(«)n)
=l l{/( +en) — ()}

¢

= lim 'l‘{./l.[!/{,(:lf + 1) — go(@)]ue(da)}

e—i) ¢

= lilll[{ﬁ(.(;lf)’lt((l(\’)

e—{

and that
' yVEdy)) = [ () VE(d
(f/,/VA(m) yV I (dy)) ./m(.f,-)(""'/) (dy)
= /(‘I},V,{/u(.’l?))’lt((l(\’)
J1
= /.(/('v(;z:)(‘//)u((l(v)
J1

: 1
= lim =[ga(2 4+ €n) — go(x)]u(da)

J[ =0 €

= /liuu/),((y)’u,((l(v) .

Je—0

Since the ¢.’s are uniformly Lipschitz continuous, i.e. 3 M < oo such that
9o() — g2} S M|ly — 2] V v,y € X and ¥V o« € I, we have

M
6] < eyl = Ml < oo

Then, since w is totally finite, we can apply the Dominated Convergence
Theorem to interchange lim, o and [;. This establishes (2); hence, (1). The
identical argument establishes that

v /I T )M ) = /, V() MdH) |

and the result follows. a

We now return to problem (NLP). As in the finite-dimensional case, in or-
der to derive a necessity condition from Proposition 2.1, we must supplement
the first-order conditions with a constraint qualification.

13



Definition 2.2 Suppose that @™ is « feasible point of problem (NLP). We
say that o* satisfies the constraint qualification for problem (NLP) if:

for each nonzero z € X satisfying (=, Vg, (2*)) > 0V a € Iy(a*) and
(2, Vhg(a*)) = 0V B € J, there exists 7 > 0 and a continuous arc
C:[0,7) = X satisfying

C(0) = a~,

Vielh,r) andVaoel,
) Y re[lr)andV e T.

Our main result now follows precisely as in the finite-dimensional case.

Theorem 2.1 Let K = VA (2™) UV B(«™). Assume
Al: K is compact;
A2:  C(K) is closed.

If «* satisfies the constraint qualification for problem (NLP), then a nec-
essary condition for o™ to be a local solution of problem (NLP) is that the
first-order conditions hold.

Proof: We invoke Proposition 2.1. Suppose that 2* 1s a local solution and
that z € Z,(«*). Clearly it must he that = # 0, so there exists a feasible
continuous arc ' : [0,7) — X. Siuce @™ is a local solution, for t > 0
sufficiently small it must he that

Fe) = () 2 0

and therefore |

SLHem) = Heo)z 0.

But this implies that
[f o CT(0) = (V(C(0)).C(0)) = (Vf(«"),2) 2 0,

which 1s a contradiction. ]
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3 Discussion of Hypotheses

Let us now examine assumptions Al and A2 of Theorem 2.1. To begin, recall
that they automatically hold iu the case of finite programming. Specifically,
a finite set is compact, and it is well-known that a finitely generated cone
is closed. Hence, assumptions Al aud A2 are exactly the price one must
pay to extend the Farkas lemma approach to necessity conditions from finite
programming to infinite programming. Of course this extension will be of
no value if we cannot find reasonable conditions that imply assumptions Al,
A2, and the constraint qualification. Such conditions are the subject of the
present section; in the next section, we will present a meaningful example
that satisfies our conditions.

We first consider assmnption Al, the compactness assumption for the sets
VAp(x*) and VB(2*). Since problem (NLP) is stated without reference to
these sets, it is obviously ciumbersome to check hypotheses involving them.
Fortunately, many problems will not require this.

Lemma 3.1 Supposc that the g, and hy are elements of a real Hilbert space
I'. Fiex € X and let V. denole couluation at @, Suppose that the g, and hg
are uniformly continuous and thal 'V, is « continuous functional on A and
B. Assume that the index scts I and J have been topologized. If I and J are
compact and the index maps o — g, and 3 — hy are continuous, then the

sets VAg(x) and VB(«x) are compact.

Proof: We argue in terms of the ¢,. Given a sequence {a,} C Io(z),
we claim that there exists oy € [y(+) and a subsequence {e,} such that
Vo () = Vgu, ().

The indexing assumptions imply that A is compact. Since V, is con-
tinuous on A, it follows that the level set Ag(x) = {¢o @ gu(x) = 0} =
{90 @ Vilga) = 0} is closed, hence compact itself. Therefore there exists
ap € Iy(x) and a subsequence {a,} such that g, = oy,

The convergence indicated is in norm. However, since the g, are uniformly
continuous, the convergence must also be nniform. But this allows us to write

lim Vg, ,(r) =V lim g, ,(2) = Vg, (x).

n!—oo ! — 0



We now derive conditions which imply that assumption A2 holds. We first
derive a technical lemma about expectations that will be used to show that
K compact and 0 ¢ Cy(K) implies A2. This lemma derives from probability
theory. An excellent reference for the requisite material is Billingsley [2].

Lemma 3.2 Let H denote a veal Hilbert space with inner product (-, -). Let
M, (K) denote the famnily of probabilily measures that concentrate on the set
K C H. If K is compact, then the set of eapectations C1(K) = { [ xp(dx) :
€ My(K)} is convex and compact.

Remark: As mentioned before, the set () is essentially the convex hull
of K.

Proof: Since K is compact, [(y, ) p(de) < |yl [ l|lpe(de) < |lyllsupeerllzil

oo; we are therefore assured that the expectations exist. The convexity of

C1(K) follows immediately from the linearity of expectation.

To demonstrate compactness, consider the sequence {z, = [ap,(dz) :
fn € My(K)}. Since K is compact, M{(#) is tight. It follows from Pro-
horov’s Theorem that there exists a weakly convergent subsequence of {y1,,},
i.e. that there exists jiy € My(L\') and a subsequence {jt,s} such that

ot~ ot

for all bounded continuous functions ¢ : H — (—o0, +00). Since K is com-
pact, (y,-) is such a function; hence

./(;1/,:1:)/L,11((/.17) — ‘/‘(y, Ypo(da) Yy € H .

Then it must be that the Riesz representers

Ly = / wpr(de) — ay = / apo(de)

so the arbitrary sequence {u,} has a convergent subsequence. 0
We now remove the restriction that the positive measures used to form
expectations have a total mass of unity.

Lemma 3.3 Let H denote a real Hilbert space with inner product (- ,-) and
origin 0. Let M(K) denote the family of totally finite, positive measures
that concentrate on the sct N C H. If K is compact and 0 & Cy(K), then
C(K) := {Jap(da): € M(N)} is conver and closed.
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Remark: As mentioned hefore, the set C/(K) is essentially the half-cone
generated by the convex hnll of K.

Remark: The conditions that A" is compact and 0 € Cy(K) are sufficient
but not necessary for the conclusion. To illustrate, let .S be a closed
subspace of H and let ¥ C S be any set such that 0 is an interior point
of C1(K) C S relative to S, e.p. {2 € S ||«]| < 1}. Then C(K) =S
is automatically convex and closed. However, the simple conditions
stated in the lemma have a natural analog in the finite-dimensional
theory and are entirely adequate for the example of Section 4.

Proof: Writing C'(K) = {ruw:w € C1(I),r = [0,400)}, it follows from the
convexity of Cy(K) that ("(/') is a convex half-cone. We claim that C(K) is
also closed.

Toward that end, suppose that {y,} C C(K) with ||y, — g|| — 0. Write
Yn = 10, with a,, € C1(K). By the compactness of C4(K), {«,} contains a
subsequence {wx,} with ||, — || — 0 for some & € C1(K). Moreover, since
0 ¢ C(K), ||z|| > 0.

Now let € > 0 be arbitrary. By coustruction, there exists N(e) such that
n’ > N(e) entails ||o, — 7| < ¢ and |[r00 — )| < €. It follows that, if
e < ||Z]| and n' > N(e), then

171 I | 7]
—_ — " — — k)
EER EEE
so that r, — 7 := ||g||/||#||. Hence,
|1y — 10 ® + v @ — 7|

< ruliew =+ e — 7l 7]

— 0.

I

Hy/”/ — F.’T‘H

By the uniqueness of limits, y = rv € (/(K). o

Notice that the hypothesis that 0 ¢ C)(K) is closely related to the oft-
imposed (in finite programmiug) condition of regularity. A feasible point «*
is said to be regular it the set N is linearly independent, 1.e. if no finite
nonzero linear combination of the constraint gradients at &* can vanish. Our
condition is somewhat stronger in one respect, but much weaker in another.
On the one hand, we consider arbitrary measures (weights) on K, not just
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finitely supported ones. This is analogous to infinite linear combinations,
hence stronger; on the other hand, we ouly consider probability measures
(nonnegative weights totalling unity); this is analogous to convex combina-
tions instead of linear combinations, hence weaker.

In finite programming, if " is a regular point, then a* must satisfy the
constraint qualification. This pleasant property does not hold in infinite
programming; in fact, since the number of linearly independent gradients
cannot exceed the dimension of the space X, the notion of regularity is
wholly inappropriate for the case of semi-infinite programming and somewhat
inappropriate in the case of infinite progranuning. Accordingly, we will search
for other conditions that will imply the constraint qualification.

The simplest situation is the one in which all of the constraints are linear.
If «* and z are as in Definition 2.2, then the arc C'(t) = o™ + tz satisfies

) = o

() = =
go(C'(1) = 0 YiIi=>0, Vaée ™),
hg(C(t)) = 0 Yi>0, Vpeld.

Moreover, for each o € I ~ I(«) (the nonbinding constraints), there exists
7(e) > 0 such that
go(C'(1)) =0 V1 e [0,7()).

If the number of nonbinding constraints is finite, then we can take 7 =
inf, {7(«)} > 0 and the constraint qualification is automatically satisfied.
Otherwise, it may be that inf,{7(«)} = 0 and the constraint qualification
may not hold. We are therelore content to establish that the constraint
qualification holds for one important family of examples.

Both control theory and statistics abound with constraints of the sort
that a function be hounded by certain values. The following result addresses
the prototypical case; we hope that the method of proof will sutfice for a
variety of applications.

Lemma 3.4 Let X denote a real Hilbert space of functions x @ I — (—oo, +00).
Let g, denote coaluation al «« € 1. If X is a proper functional Hilbert space,
i.e. if the go are continuous, then the collection of inequality constraints

go()=w(a) >0 VYael
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satisfies the constraint qualificalion.

Proof: Since the ¢, are continuous and linear, Vg, (x) exists V2 € X.
Suppose that 2* € X is a feasible point and that a nonzero z € X satisfies

(2, Vo (™)) = ¢/ (47)(2) = z(0) 20 Va € Iy(x7),
Le. Va suchthat a™(o) =0.

For t > 0, let
Kit):={ye X :a"(a)+tyla) 20 Vael}.

We note that the sets K (#) are nested, for suppose that t, < #;. If 0 <
v*(a) + tiy(e) Ya€l, e y€ N(l), then

0< ;9:1:*((\/) + (o) < a™(o) + toy(o) Yo el,
1

ie. y € K(ty). Thus, K(#) C N(10).

Suppose that #, | t,. Then U, A(1,) C K(ty); hence, the closure of
U, K (t,,) is contained in the closure of K (#y),which is just K(to). To establish
the converse, let yo C K (1y) and set y, = (fo/tn)yo. Then v, C K(t,) and
lvn — yoll = 0; hence, K(ty) is contained in the closure of U K ().

Suppose that t,, T . Then O, N (1,,), i.e.

{a*(o) + Lyla) >0 Yael} Vi,.

Then
{a™ (o) +1oy(e) >0 Vo el},

le. y € K(to).

It now follows from Proposition 3.22 in Attouch [1] that, if £, — to,
then K(t,) — K(to) in the sense of Mosco-convergence of closed convex
sets. Furthermore, Proposition 3.34 in Attouch [1] states that the Mosco-
convergence of closed convex sets is equivalent to the convergence of the
projections of an arbitrary point into these sets. Therefore, let 2*(t) denote
the projection of Z into KN (t). Then, t, — ty entails ||2*(t.) — z*(to)|| — 0,
and we conclude that z*(1) is a continuous arc for £ > 0. Moreover, since
*(a) = 0 entails z(¢v) > 0, 2 is contained in the closure of Urso K (1). We
can therefore close the arc by setting z*(0) = z.

1Y



Now let C'(t) := a* +t=*(1). By construction, (' is a feasible continuous
arc with C'(0) = «*. Moreover,

. 1 - -y . R l Lk — 1 * —
fim HC(1) ~ C(0) = 1= = iy +111="(0) = 12]) = i |=*(1) = = = 0,

so C'(0) = z. This verifies the conditions specified by Definition 2.2. O
Remark: It is also possible to give an elementary proof that the arc z*(t) is
continuous. The use of Mosco-convergence was suggested to us anonymously
by the referee. The equivalence of Mosco-convergence and the convergence
of the projections of an arbitrary poiut is due to Sonntag [18].

4 An Example

We now apply our results to obtain necessity conditions for a well-known
problem from the statistical literature on probability density estimation.
Watson and Leadbetter [24] sought to minimize the mean integrated squared
error of a kernel probability deusity estimator. Specifically, given indepen-
dent and identically distributed raudom variables Xy, ..., X,, with probabil-
ity density function 8, they analyzed the optimization problem

!

2
.. . . N l 1
minimize , - :
KneL?(—ootoo) £ ./—N l:—l Z N, (r—X;) - (3(:1:)} da .

Ca=1

It turns out that solutions are typically not everywhere nonnegative, which
results in estimates that are not themselves probability densities. This is a
matter of taste, but if we prefer to estimate densities with densities; then we
must confront the constrained optimization problem

2
RN — 1
minimize . , A
K€L (—o0,400) I / " N, (@ —X;)— (5(:1:):| da
A i=1
subject to N, (x) >0 = € (—o0,+00)
/ | N, (e)yde=1.

This problem does not yield to variational methods, making it a natural can-
didate for the application of onr multiplier theory. We proceed to formulate
it in that context.



Consider the Sobolev space H'[aq, a], which is defined by endowing the
vector space
{a s e 1? [y, ] for j = 0,1}

with the inner product

1

<:"1 {/> = Z<l(l)a ;‘/(j)>L2[crl,(v2]'

=0

It should be noted that the derivatives iu the definition of H'[ay, avy] are taken
in the sense of distribmtions. It is well kuown that H'[ay, o] is a proper func-
tional Hilbert space and that cach element of H'[oq, ] is absolutely con-
tinuous. See Appendix I of Tapia and Thompson [20] for a discussion of the
analogous Sobolev space, H'(—oc, +00). Notice that, if § € H'(—o0, +00),
then the restriction of § to [o, ay] is an element of H'[aq, avy].

We now return to the problem of Watson and Leadbetter, which we re-
formulate as problem (WL):

2
C e N I .
1111311}1{;1/\1’126 flr) =1L / — Z Lo — xi) — 0(ev)]| da

‘=1
subject to gol,) =, () Z 0 Vael
hw,) = / o (o)da=1=10,
JI

(WL)

where I = [ay, ], X = H'[a;, ], and z, denotes the extension of z, to
(—o0, +00) defined by #,(«) = 01l o € I; and where the expectation is taken
with respect to the independent and ideutically distributed random variables
xi,i = 1,...,n, having probability density function § € H'(—oo, +00). We
have modified the original problem in two ways. First; we have demanded
some additional smoothness. Second, we have restricted attention to kernels
supported on [aq, ay]. We proceed to verify that Theorem 2.1 can be applied
to problem (WL).

The point evaluation functionals ¢, € I' = X~ are both linear and
continuous, hence continuously differentiable and also uniformly continu-
ous. It is also easily checked that f,h € CYX). Furthermore, the set
VB(x) = {Vh(x)} is obviously compact. We also have

Lemma 4.1 For problem (WL), the set VA(x) = {Vga(x) : « € I} is

compact.



Proof: We apply Lemma 3.1. The point evaluation functionals V., € I
are continuous, since V(¢ ) = ¢.(+) = (o). Since I is compact, it remains
only to demonstrate that the index map o +— g, is continuous.

Consider the optimization problem

Ce e ey .
minimize / [;17'((\/)]2(](.1/
Jaby

subject to  w(ay) = by, a(ay) = by .

It is a trivial exercise in the calenlus of variations to establish that the min-
imizer is a straight line with slope

2l (o) = (by — by)/(ay — ay).

This yields a minimum objective function value of |by — bi|*/lag — aq]. Tt
follows that any @ € X with w(«;) = by and w(ay) = by must satisty

H:::H2 > by — byl?/ay — aql. (3)

Now suppose that «, — a, as n — co. Then (3) allows us to write

e = foall = S 100 ) — ua ()] = sp_ i) — (et
]| <1 fl=1<1
< sap o, — n“\%H;sz = |, — (v(,|% —0asn—oo0. O
lef]<1

Next, we show that our conditions on K hold.

Lemma 4.2 For problem (WL), lct K = VA(x)UVh(x). Then C1(K) does

not contain the origin of X = H' oy, ay].

Proof: We exploit the fact that the gradient is the Riesz representer of the
directional derivative. Let 5 € X then

!]:y(l)(ll) = |lun —1— [!/(,v(;l,‘ + f[/) — L(/“(;I:)]

t—0 f

= liml [w(e) + ty(ov) — @ ()]

t—0 f

= ()

I
S



and

B ()(n)

4
11_1}(} ?[/l,(.:. + 1) — I(x)]
LTy ,
= %1_11(} n [/I [+ ty](r)dev — 1 — /I:r:(a)(]a + 1]
= / n{o)da .
Jr
Hence, Vg, (x) must satisfy
(Vyal)on) = () Ve X
and Vh(x) must satisfy

(VI(x),y) = / n(o)do Ve X.
J1

Now suppose that there exists g € My(R') such that [ yu(dy) = 0. Let
A = pu(Vh(x)) and let (1 — A)u denote the measure on (I,1) induced by .
Then it must be that, Vi € X,

= (0,1)
= (/ yp(dy). )

Sy, ) pddy)

(o) pe(dy) + XV (), )

\\

= / . y(a)p(dy) + A / n(ev)de
= (L=X) ./1 y(e)u(de) + )\./I n(ce)der . (4)

But the last expression in (4) is strictly positive if # € X is strictly positive
on I; hence, C1(K) cannot coutain the origin of X. o
Remark: If u is a finitely supported signed measure, say v = Y, u;1( ),
where 1 denotes point-mass, then (4) reduces to

I

0=(1l—A) Z win(og) + /\/I n(a)de .

=1
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If A = 1, this equality fails for (say) (o) = 1; if A # 1, this equality fails
for any 7 satisfying y(c) = —u; and [, n(c)do = 0. Thus, the condition of
regularity also holds for problem (WL). Notice, however, that the restriction
to finite linear combinations in the definition of linear independence is crucial
to this conclusion. If arbitrary signed measures are allowed, then take u to
be the negative uniform measure on I and pnt A = 1/(az — ay +1). Then
the last expression in (4) 1s

(L —=X) /I (e)u(da) + A /1 (o) der

1 L : 1
[ vy — g + 1] . n(a)do + PO n(a)da

which does indeed vanish ¥V 5 € X. This distinction should not be surprising.

Roughly stated, finitely many values do not determine a function’s Lebesgue
integral, but all values together do.

Finally, the equality constraiut in problem (WL) is easily incorporated
into the proof of Lemma 3.4. This provides a means of verifying that any
feasible point for problem (WL) satisfies the constraint qualification. Theo-
rem 2.1 therefore applies: a necessary condition for a7 to be a local solution
of problem (WL) is that the first-order conditions hold.

Let us make some further observations concerning problem (WL). The
objective function is strictly convex and the constraint set is convex. It fol-
lows that any local solution will he the unique global solution. It is well
known that the variational inequality which serves as a necessity condition
when the constraint set is convex serves as a sufficiency condition when the
objective function is also convex. A rather straightforward argument can be
used to show that, in the case of a convex constraint set, condition (i) of
Proposition 2.1, namely Z,(+*) = ¢, implies the variational inequality neces-
sity condition. These comments say that, in the case of a convex program
where the constraint qualification holds (as is the case for problem (WL)),
the existence of Lagrange multiplicers (Proposition 2.1) is both necessary and
sufficient for z* to be a global minimizer.

Our theory, the above comments aud some straightforward computations
lead us to the following result concerning problem (WL): «7 is the unique

global minimizer if and ouly if there exists a totally finite measure concen-

*

*, such

trating on [, @), with density function wf, and a real number A
that



e (@)ur(a) =0 Y a € [ar, oy,
)

ut(a) >0 Vo€ log, oy

In condition (a), 8(«) := 6(—«), and * denotes convolution.

Since problem (WL) is Lighly nontrivial, it is not surprising that the cor-
responding necessity conditions are somewhat complicated. A more detailed
analysis of these conditions was nndertaken by Trosset [21]. Nevertheless, it
is evident from the material presented here that the theory developed in Sec-
tions 2 and 3 can be productively applied to a body of problems admitting
an infinite programming formulation.
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